Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ACS Omega ; 6(14): 9667-9671, 2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-1191080

ABSTRACT

SARS-CoV-2 is the etiologic agent of COVID-19, which has led to a dramatic loss of human life and presents an unprecedented challenge to public health worldwide. The gold standard assay for SARS-CoV-2 identification is real-time polymerase chain reaction; however, this assay depends on highly trained personnel and sophisticated equipment and may suffer from false results. Thus, a serological antibody test is a supplement to the diagnosis or screening of SARS-CoV-2. Here, we develop and evaluate the diagnostic performance of an IgM/IgG indirect ELISA method for antibodies against SARS-CoV-2 in COVID-19. The ELISA was constructed by coating with a recombinant nucleocapsid protein of SARS-CoV-2 on an enzyme immunoassay plate, and its sensitivity and specificity for clinical diagnosis of SARS-CoV-2 infection was assessed by detecting the SARS-CoV-2-specific IgM and IgG antibodies in COVID-19 patient's sera or healthy person's sera. The SARS-CoV-2 positive serum samples (n = 168) were collected from confirmed COVID-19 patients. A commercial nucleocapsid protein-based chemiluminescent immunoassay (CLIA) kit and a colloidal gold immunochromatography kit were compared with those of the ELISA assay. The specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of IgM were 100, 95.24, 100, and 91.84%, whereas those of IgG were 100, 97.02, 100, and 94.74%, respectively. We developed a highly sensitive and specific SARS-CoV-2 nucleocapsid protein-based ELISA method for the diagnosis and epidemiologic investigation of COVID-19 by SARS-CoV-2 IgM and IgG antibody detection.

2.
Analyst ; 145(15): 5345-5352, 2020 Aug 07.
Article in English | MEDLINE | ID: covidwho-610551

ABSTRACT

The ongoing worldwide SARS-CoV-2 epidemic clearly has a tremendous influence on public health. Molecular detection based on oral swabs was used for confirmation of SARS-CoV-2 infection. However, high false negative rates were reported. We describe here the development of a point-of-care (POC) serological assay for the detection of IgG antibody against SARS-CoV-2. The principle of a lateral flow immunoassay strip (LFIAs) consists of fixing SARS-CoV-2 nucleocapsid protein to the surface of the strip and coupling anti-human IgG with colloidal gold nanoparticles (Au NPs). A series of parameters of this method were optimized, including the concentration of coating antigen, BSA blocking concentration and pH value for conjugation. The entire detection process took 15-20 min with a volume of 80 µL of the analyte solution containing 10 µL of serum and 70 µL sample diluent. The performance of the established assay was evaluated using serum samples of the clinically diagnosed cases of Coronavirus Disease 2019 (COVID-19). Our results indicated that the LFIAs for SARS-CoV-2 had satisfactory stability and reproducibility. As a result, our fast and easy LFIAs could provide a preliminary test result for physicians to make the correct diagnosis of SARS-CoV-2 infections along with alternative testing methods and clinical findings, as well as seroprevalence determination, especially in low-resource countries.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Pneumonia, Viral/diagnosis , Antibodies, Viral/blood , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Gold/chemistry , Humans , Immunoglobulin M/blood , Metal Nanoparticles/chemistry , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Point-of-Care Systems , Reproducibility of Results , SARS-CoV-2
3.
ACS Omega ; 5(21): 12550-12556, 2020 Jun 02.
Article in English | MEDLINE | ID: covidwho-326200

ABSTRACT

Last year, the novel coronavirus disease (COVID-19) emerged in Wuhan, and it has rapidly spread to many other countries and regions. COVID-19 exhibits a strong human-to-human transmission infectivity and could cause acute respiratory diseases. Asymptomatic carriers are able to infect other healthy persons, and this poses a challenge for public health; the World Health Organization (WHO) has already announced COVID-19 as a global pandemic. Nucleic acid testing, considered as the current primary method for diagnosing COVID-19, might lead to false negatives and is difficult to be applied for every suspected patient because of the existence of asymptomatic carriers. Meanwhile, detecting specific antibodies in blood, such as the IgM antibody, against the SARS-CoV-2 virus is another choice for COVID-19 diagnosis, as it is widely accepted that IgM is an important indicator in the acute infection period. In this study, a colloidal gold nanoparticle-based lateral-flow (AuNP-LF) assay was developed to achieve rapid diagnosis and on-site detection of the IgM antibody against the SARS-CoV-2 virus through the indirect immunochromatography method. For preparing AuNP-LF strips, the SARS-CoV-2 nucleoprotein (SARS-CoV-2 NP) was coated on an analytical membrane for sample capture, and antihuman IgM was conjugated with AuNPs to form the detecting reporter. Optimization of AuNP-LF assay was carried out by altering the pH value and the amount of antihuman IgM. The performance of AuNP-LF assay was evaluated by testing serum samples of COVID-19 patients and normal humans. The results were compared with the real-time polymerase chain reaction. The sensitivity and specificity of AuNP-LF assay were determined to be 100 and 93.3%, respectively, and an almost perfect agreement was exhibited by Kappa statistics (κ coefficient = 0.872). AuNP-LF assay showed outstanding selectivity in the detection of IgM against the SARS-CoV-2 virus with no interference from other viruses such as severe fever with thrombocytopenia syndrome virus (SFTSV) and dengue virus (DFV). AuNP-LF assay was able to achieve results within 15 min and needed only 10-20 µL serum for each test. As a whole, in the light of its advantages such as excellent specificity and stability, easy operation, low cost, and being less time-consuming, AuNP-LF assay is a feasible method for the diagnosis of COVID-19 in primary hospitals and laboratories, especially in emergency situations in which numerous samples need to be tested on time.

SELECTION OF CITATIONS
SEARCH DETAIL